
Control Engineering Practice 77 (2018) 1–14

Contents lists available at ScienceDirect

Control Engineering Practice

journal homepage: www.elsevier.com/locate/conengprac

Reliable state of charge and state of health estimation using the smooth
variable structure filter
Hamed Hossein Afshari a,*, Mina Attari a, Ryan Ahmed a, Ali Delbari a, Saeid Habibi a,
Tina Shoa b

a Centre for Mechatronics and Hybrid Technology, McMaster University, Hamilton, ON, Canada
b Cadex Electronics Inc., Vancouver, BC, Canada

A R T I C L E I N F O

Keywords:
State of charge estimation
Smooth variable structure filter
Modeling uncertainty
Experimental study

A B S T R A C T

This paper introduces a reliable strategy for the state of charge (SOC) and the state of health (SOH) estimation of
healthy and aged Lithium polymer cells. Dynamics of the cell are modeled using some equivalent circuit models
and parameters of each model are calculated by adaptive particle swarm optimization. The modeling process
involves modeling and parametric uncertainties as well as measurement and instrumentation noise. They may
degrade the performance of an optimal filter for SOC and SOH estimation. To alleviate effects of such uncertain
factors, the smooth variable structure filter (SVSF) is implemented. The SVSF is a novel robust state estimation
method that benefits from the robustness property of variable structure systems. The performance of the SVSF is
compared with the extended Kalman filter (EKF) for real-time SOC estimation of a healthy and an aged Lithium
polymer cell. The paper moreover presents a novel method for SOH estimation using the SVSF’s chattering signal
and without the need for modeling the cell undergoes aging. Experiments show performance benefits of the SVSF
for reliable SOC and SOH estimation of healthy and aged Lithium polymer cells.

1. Introduction

Li-Ion batteries are increasingly used in energy storage devices for
applications such as electric vehicles, cell phones, laptops, medical
devices, etc. This is due to their high energy density, durability, safety,
lack of hysteresis, and slow loss of charge when not in use. In order
to improve the performance of Li-Ion batteries and increase their
safety and efficiency, accurate management, monitoring, and control
are required (Afshari, Attari, Ahmed, Farag, & Habibi, 2016). Battery
management systems are designed to estimate quantities representing
battery’s operating conditions (e.g. state of charge (SOC), state of health
(SOH), etc.) and at the same time to prevent the battery from working
under dangerous situations. They accurately estimate the battery’s SOC
as a function of the operating time. In this context, state and parameter
estimation methods are used to estimate values of the SOC and the SOH
based on indirect, inaccurate and uncertain sensor measurements. Note
that the accuracy of the SOC and the SOH estimation may decrease due
to factors such as inaccuracies in modeling batteries, parametric varia-
tions due to aging, sensor noise, unpredictable temperature variations,
hysteresis effects, unknown initial SOC, etc.
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1.1. The state estimation task

State estimation is referred to as the task of calculating numeric
values of hidden state variables from indirect, inaccurate and partial
measurements of a system. The main objective of state estimation is to
minimize the state estimation error as well as to preserve robustness
versus noise, and uncertainties. The Kalman filter is the most popular
method for state estimation that applies to linear systems restricted to
white noise with a Gaussian distribution. The Kalman filter is a model-
based estimator and provides optimal state estimates by minimizing the
state error covariance matrix given a known model. For the generic case
of systems with nonlinear state and/or measurement models, several
numerical solutions were proposed. These solutions are generally based
on linearization of the state and measurement model (e.g., the Extended
Kalman filter (Afshari, Gadsden, & Habibi, 2017)) or PDF approximation
(e.g., the Unscented Kalman filter (Ristic, Arulampalam, & Gordon,
2004), or the Cubature Kalman filter (Arasaratnam & Haykin, 2009)).
In the extended Kalman filter (EKF), the gain is obtained by locally
linearizing the state or measurement model at the operating point. The
main concern with the Kalman-type filtering is the assumption of having
a perfect model with known parameters. In real applications, however,
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Nomenclature

C Capacitance element, C-rate
𝐶𝑛 Nominal capacity of the cell
EKF Extended Kalman filter
H Linear measurement matrix
K Filter’s gain
OCV Open circuit voltage
PSO Particle swarm optimization
𝐐𝐸𝐾𝐹 State error covariance for EKF
R Resistance element
𝑅0 Internal resistance element
𝐑𝐸𝐾𝐹 Measurement error covariance for EKF
SOC, Z State of charge
SOH State of health
SVSF Smooth variable structure filter
V Voltage
𝑉𝑡 Terminal voltage
sat() Saturation function
sgn() Sign function
𝑒𝑥 State estimation error
𝑒𝑧 Measurement error
𝑒𝑧,𝑘|𝑘 a priori (updated) measurement error
𝑒𝑧,𝑘+1|𝑘 a posteriori (predicted) measurement error
𝑓 Nonlinear state model
𝑖 Current
𝑘 Discrete-time index
𝑢 Control variable
𝑣 Measurement noise
𝑤 Process noise
𝑥 State vector
𝑥𝑘|𝑘 The a priori (updated) state value
𝑥𝑘+1|𝑘 The a posteriori (predicted) state value
z Measurement vector
𝛯 Chattering indicator
𝛥𝑡 Sampling time
𝛼 Scaling factor for chattering indicator
𝛾 Convergence rate
𝜂 Coulombic efficiency of the cell
𝛽 Existence boundary layer
𝜓 Smoothing boundary layer
□̂ Estimated quantity
□+ Pseudo-inverse operator

there may be considerable uncertainties about the model structure,
physical parameters, noise, and initial conditions. These factors may
significantly degrade the Kalman filter’s performance from its optimal
solution.

To overcome or at least decrease effects of such factors on the
estimator’s performance, robust state estimation is proposed in which
the filter is insensitive to a wider range of noise and uncertainties. There
is a large number of publications in the literature devoted to design
of robust state estimators for systems with norm-bounded noise and
uncertainties, such as minimax estimators (Krener, 1980), considering
the worst case scenario for state estimation, e.g. the 𝐻∞ filter (Zames,
1981), or set-membership estimators (Milanese & Tempo, 1985). There
are some robust estimation methods mainly based on applying a tech-
nique to robustify the Kalman filter (Gandhi & Mili, 2010). Robust
Kalman filters (Gandhi & Mili, 2010) are applied to systems with
norm-bounded modeling uncertainties in which an upper bound of the
mean square estimation error is minimized. Robust state estimation
may be achieved by means of the variable structure filtering (Gadsden
& Habibi, 2013; Habibi, 2007). The smooth variable structure filter
(SVSF) (Habibi, 2007) is a relatively new robust state estimation that

benefits from the robustness property of variable structure systems. It
guarantees the stability of state estimates by applying a discontinuous
gain and pushing the measurement error to zero (Habibi, 2007). Afshari,
Al-Ani, and Habibi (2015) and Afshari, Gadsden, and Habibi (2018)
have introduced a second-order state estimation method that works
similar to the SVSF method, but instead of using a smoothing boundary
layer for chattering removal, it applies a second-order time-difference
condition. They also overviewed main Gaussian filters applied for state
and parameter estimation (Afshari et al., 2017).

1.2. Modeling Lithium-Ion batteries

In order to apply a model-based filter (e.g. Kalman filter, SVSF,
etc.) for the SOC and SOH estimation, dynamics of the battery need
to be modeled. Several methods have been reported in the literature for
modeling Li-Ion batteries. These methods may be categorized into three
main approaches that include: 1- empirical modeling, 2- equivalent
circuit modeling, and 3- electrochemical modeling. Empirical models
or black-box models simulate the terminal voltage behavior of Li-Ion
batteries without the need for considering the underlying physics or
any electrochemical reactions that may happen within the cells. These
models are mainly based on a series of math functions with unknown
parameters. Values of these parameters can be calculated using a set
of input–output data and an optimization method. The optimization
method calculates the unknown parameters by minimizing the output
error that is the difference between the simulated and the measured
output (terminal voltage).

Equivalent circuit models use lumped-element components such as
resistors and capacitors to simulate dynamics of a cell. Based on the
different levels of modeling complexity, they may include first-order,
second-order, or third-order resistor–capacitor elements in addition to
an element that represents the hysteresis effect. They do not model the
cell’s underlying chemistry. In contrast, the electrochemical modeling
approach considers the electrochemical reactions happening inside a
cell. They simulate the internal electrochemical dynamics of the cell
using a set of partial differential equations. Electrochemical modeling is
the most accurate approach, while it is computationally more expensive.
Several techniques have been reported in the literature in order to
simplify electrochemical models and apply them to real-time imple-
mentations. Note that however, the choice among these three modeling
approaches is a compromise between modeling complexity, accuracy,
and computational cost (Afshari, Attari et al., 2016).

The equivalent circuit approach is one of the most popular ap-
proaches for modeling Li-Ion batteries. It is because a circuit model
may be rather simple, e.g. only has a voltage source and a variable
resistance, or maybe complex given local conditions in a spatially-
resolved model (Plett, 2004b). This approach uses a group of resistors
and capacitors, where their magnitudes are obtained using an optimiza-
tion method. The optimization method employs a random search at each
time step to extract the parametric values such that the error between
the measured terminal voltage and the simulated one is minimized. The
main advantage of the equivalent circuit approach for modeling is its
capability for real-time applications with an acceptable performance.
The main disadvantage of this approach is its limitation for modeling the
electrochemical reactions that take place internally inside the cell. This
limitation prevents it from modeling some physical behaviors including
the power fading, the capacity fading and more importantly the aging
effect (Plett, 2004b). Ferrari-Trecate, Muselli, Liberati, and Morari
(2003) have proposed a new method for the identification of hybrid
systems formulated in the piecewise affine form. This method is based
on the use of clustering for the classification of data points, followed
by constructing a model for each cluster and linear identification of its
parameters (Ferrari-Trecate et al., 2003).
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1.3. Literature review

The task of real-time SOC and SOH estimation of batteries is a rela-
tively challenging task. It is due to numerous physical and electrochemi-
cal parameters that interact together and affect the cell dynamics. There
are a large number of sophisticated phenomena that may affect the cell
behavior under certain conditions. They include self-discharging, aging
effects, the imbalance between cells, capacity fade, and temperature-
dependent factors (Samadani, Fraser, & Fowler, 2012). Hu, Li, and
Peng (2012) presented a comparative study of different approaches for
modeling Li-Ion cells. They used six empirical models as well as six
equivalent circuit models to simulate cell dynamics with different levels
of complexity (Hu et al., 2012). Plett presented a detailed procedure
for modeling, parametrization, and SOC estimation of Li-Ion batteries
in three publications (Plett, 2004a, 2004b, 2004c). Plett introduced
a general background on battery management systems and further
requirements for SOC estimation in part 1 (Plett, 2004a). He reviewed
some of the main techniques presented in the literature for modeling and
parameter identification of Li-Ion Polymer cells in part 2 (Plett, 2004b).
Plett also applied the extended Kalman filter (EKF) for SOC estimation
of a cell in part 3 (Plett, 2004c). Gomez, Nelson, Kalu, Weatherspoon,
and Zhang (2011) have presented a temperature dependent equivalent
circuit model that accounts for both temperature and SOC.

Chen et al. (2016) have introduced a robust sliding mode observer
for SOC estimation of lithium polymer cells that were modeled using
the equivalent circuit approach. They moreover employed a Neural
Network technique to tune an upper bound for uncertainties within
the battery model. This technique applies a switching gain based on
values of the upper bound in order to cancel the SOC estimation error
(Chen et al., 2016). More recently, Zhao, Duncan, and Howey (2017)
investigated the observability of equivalent circuit models for Li-Ion
batteries and introduced a method to estimate their SOC in the presence
of sensor biases. Lashway and Mohammed (2016) implemented an
adaptive strategy for the health monitoring and performance analysis
of Lead-Acid and Li-Ion cells. They developed an adaptive Coulomb
counting method that accounted for the shift in the SOH estimates
during cycling tests (Lashway & Mohammed, 2016).

Rahimi-Eichi, Baronti, and Chow (2014) have presented an online
adaptive parameter identification technique for the SOC of lithium poly-
mer cells. They used the piecewise linear approximation to interpolate
the nonlinear relationship between the open circuit voltage and the SOC
in the equivalent circuit modeling context. Their technique employed
the moving window least squares method for adapting parameters of
the battery model (Rahimi-Eichi et al., 2014). Kim and Cho (2011) have
introduced a novel SOC and SOH estimation method by combining the
EKF with a per-unit system. This method used the statistical analysis of
the voltage patterns in order to update the model’s parameters affected
by aging (Kim & Cho, 2011). Afshari, Ahmed, Farag, and Habibi (2016)
and Ahmed, El-Sayed, Arasaratnam, and Habibi (2014) have presented
a new strategy for electrochemical modeling of Lithium Iron Phosphate
cells using the averaged single particle model (Afshari, Ahmed et al.,
2016; Ahmed, El-Sayed, Arasaratnam, Habibi et al., 2014). They applied
the final value theorem within the state estimation method in order
to estimate the initial SOC at different layers of the cell (Ahmed,
El-Sayed, Arasaratnam, Tjong, & Habibi, 2014). Afshari et al. have
researched on model-based methods for health monitoring of industrial
systems (Afshari, Al-Ani, & Habibi, 2014; Afshari et al., 2015; Afshari,
Gadsden, & Habibi, 2014).

1.4. Contributions

This paper presents a detailed procedure for modeling, parametriza-
tion, as well as SOC and SOH estimation of a Lithium polymer cell
using an equivalent circuit model. A battery test setup is designed
and built to conduct a set of experiments required for modeling and
parametrization. The first contribution of this paper is to implement the

Fig. 1. Main steps of the process for SOC and SOH estimation using SVSF.

robust SVSF method for real-time SOC estimation of healthy and aged
Lithium polymer cells. The accuracy and robustness of the SVSF are
then compared with the EKF for a healthy cell with a known model
and an aged cell with an uncertain model. The second contribution
is to introduce and implement a novel SOH estimation technique
using equivalent circuit modeling. The SOH is precisely estimated by
analyzing the SVSF’s secondary indicator referred to as chattering. This
indicator can be used to measure uncertainties for systems under fault
or any abnormal conditions. This indicator is used to estimate the SOH
of a cell undergoes aging without the need for modeling the aged cell.
Fig. 1 presents main steps of the process for SOC and SOH estimation
using the SVSF method.

2. The Smooth Variable Structure Filter (SVSF) vs. Extended
Kalman Filter (EKF)

The Kalman-type state estimation approach is referred to as a class
of optimal (or near-optimal) recursive Bayesian filters restricted to
systems with Gaussian noise distributions. The Kalman filter itself is an
optimal state estimation method that applies to systems with a linear
state and a linear measurement model restricted to Gaussian noise
distributions. Based on the a prior knowledge of the system’s model and
the uncertain measurements, the Kalman filter recursively estimates the
states by minimizing the covariance of the state estimation error (Afshari
et al., 2017). The extended Kalman filter (EKF) is an extension to
the Kalman filter that applies to systems with nonlinear state and/or
measurement models and provides near-optimal state estimates. The
EKF is formulated based on the local linearization of the nonlinear
state and/or measurement models using the Taylor series expansion.
The linearization results in the recursive calculation of the Jacobians
for the nonlinear state and/or measurement models, whereas the state
estimates are not optimal in the mean square error sense (Afshari et al.,
2017).
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The SVSF is a model-based robust state estimation method that
can be used to estimate state variables of smooth nonlinear dynamic
systems. It has an inherent switching action that ensures convergence
of the state estimates to within a region of the real values. The switching
characteristic of the SVSF is due to a discontinuous gain which provides
robustness to bounded uncertainties (Habibi, 2007). Consider a discrete
system with a nonlinear state model and a linear measurement model,
as follows:

𝐱𝑘+1 = 𝐟 (𝐱𝑘,𝐮𝑘,𝐰𝑘), (1)

𝐳𝑘+1 = 𝐇𝐱𝑘+1 + 𝐯𝑘, (2)

where 𝑚𝑎𝑡ℎ𝑏𝑓𝑥𝑘, 𝐮𝑘, and 𝐳𝑘 are the state, input, and measurement
vectors at time step k, respectively. 𝐰𝑘 and 𝐯𝑘 are the bounded process
and the measurement noise, respectively. In addition, f is the nonlinear
state function and H is the measurement matrix. The SVSF is recursive
and is summarized as follows:

1. Prediction Step (Habibi, 2007):
∙ Calculation of a priori state and measurement estimates:

�̂�𝑘+1|𝑘 = 𝐟 (𝐱𝑘,𝐮𝑘), (3)

�̂�𝑘+1|𝑘 = �̂�𝐱𝑘+1|𝑘, (4)

where �̂� and �̂� are the estimated state and measurement vector, 𝐟 and
�̂�are the estimated state and measurement models. The a priori and a
posteriori measurement error are given by:

𝐞𝐳𝐤|𝐤 = 𝐳𝑘 − �̂��̂�𝑘|𝑘, (5)

𝐞𝐳𝐤+𝟏|𝐤 = 𝐳𝑘+1 − �̂��̂�𝑘+1|𝑘. (6)

2. Update Step (Habibi, 2007):
∙ Calculation of the SVSF’s corrective gain, as follows (Habibi, 2007):

𝐊𝑘+1 = �̂�+
(

|

|

|

𝐞𝐳,𝑘+1|𝑘
|

|

|

+ 𝛾 ||
|

𝐞𝐳,𝑘|𝑘
|

|

|

)

◦sgn(𝐞𝐳,𝑘+1|𝑘), (7)

where sgn denotes the signum function, 𝜋𝑖𝑗 is the Schur product
(element-wise multiplication), and ∑𝑟

𝑗=1𝜋𝑖𝑗 (𝑘) = 1 is the pseudo-inverse
transform. Moreover, 𝛾 is a positive coefficient and denotes the conver-
gence rate of the SVSF method (Habibi, 2007).

∙ Update the a priori state estimate to the a posteriori estimate (Habibi,
2007):

�̂�𝑘+1|𝑘+1 = �̂�𝑘+1|𝑘 +𝐊𝑘+1. (8)

The discontinuous corrective action of the SVSF gain generates
high-frequency chattering that degrades the estimation performance.
To suppress the undesirable chattering effects from state estimates, a
smoothing boundary layer is introduced into the filter formulation such
that (Habibi, 2007):

𝐊𝑘+1 = �̂�+(|𝐞𝐳,𝑘+1|𝑘| + 𝛾|𝐞𝐳,𝑘|𝑘|)◦𝑠𝑎𝑡(𝐞𝐳,𝑘+1|𝑘,𝝍), (9)

where 𝝍 is a diagonal matrix with constant entries and denotes the
smoothing boundary layer widths. In the new formulation, the sign
function is replaced with a saturation function that interpolates the
discontinuous action of the gain in a vicinity of the sliding hyperplane.
Hence, outside the smoothing layer 𝜓𝑖 (corresponding to the 𝑖th entry)
the signum function applies to preserve stability. Otherwise, inside the
smoothing layer 𝜓𝑖, the saturation function applies to interpolate the
signum function and suppress chattering. The saturation function is
given by (Habibi, 2007):

𝑠𝑎𝑡(𝑒𝑧𝑖 ,𝑘+1|𝑘, 𝜓𝑖) =

⎧

⎪

⎨

⎪

⎩

1
𝑒𝑧𝑖 ,𝑘+1|𝑘
−1

𝑒𝑧𝑖 ,𝑘+1|𝑘 ≥ 𝜓𝑖
−𝜓𝑖 ≤ 𝑒𝑧𝑖 ,𝑘+1|𝑘 ≤ 𝜓𝑖
𝑒𝑧𝑖 ,𝑘+1|𝑘 ≤ −𝜓𝑖

. (10)

(a) SVSF for cases with 𝜓 >𝛽.

(b) SVSF for cases with 𝜓 <𝛽.

Fig. 2. The main concept of the existing and the smoothing layers in SVSF
(Habibi, 2007).

Fig. 2 shows the main concept of the SVSF method for state es-
timation. The system state trajectory, estimated state trajectory, and
existence subspace versus time are also presented in this representation.
In order to start the estimation process, an initial value is selected for
the state estimation process based on a prior knowledge of the systems.
Thereafter, the estimated state is pushed towards a neighborhood of
the system’s true value referred to as the existence subspace. Once the
value enters into the existence subspace, the estimated state is forced
into switching along the system state trajectory via the SVSF’s gain.
The estimated state trajectory remains within the existing subspace that
has a width proportional to modeling and parametric uncertainties,
measurement noise, and disturbances. The corrective gain of the SVSF
is designed based on a positive definite Lyapunov candidate given by:
𝑉 = 𝑒𝑖,𝑧𝑘|𝑘

2. It is shown that the SVSF is stable and convergent if
|𝑒𝑖,𝑧𝑘+1|𝑘+1 | < |𝑒𝑖,𝑧𝑘|𝑘 | (Habibi, 2007).

There are two different boundary layers in the SVSF method in-
cluding the existence layer, and the smoothing layer. The existence
layer is defined in the close vicinity of the estimated state trajectory
in which the stability of the estimation process is guaranteed. The
width of the existence layer varies in time as a function of modeling
uncertainties. Although the width of the existence layer is unknown,
it is possible to obtain an upper boundary 𝜷 for it. Moreover, the
smoothing layer is defined to approximate the sign function in the
corrective gain formulation and filter out chattering. Its width is known
as 𝝍 and outside this layer, the sign function is applied to achieve
the stability, while inside the smoothing layer the discontinuity of the
gain is interpolated by the saturation function to provide smooth state
estimates. As presented in Fig. 2(a), when the smoothing layer width
is larger than the existence layer width 𝜓𝑖 >𝛽𝑖, chattering is filtered
out. Otherwise as presented in Fig. 2(b), if the smoothing layer width is
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smaller than the existence layer width 𝜓𝑖 <𝛽𝑖, then the smoothing layer
will be ineffective and chattering will appear (Habibi, 2007).

Main performance benefits of the SVSF over conventional estimation
methods are:

(a) The Kalman-type filtering is formulated based on the exact
knowledge of the system’s model. Under real practical applica-
tions, there may be considerable noise and uncertainties, partic-
ularly when the system is going under aging, fault conditions, or
any abnormal behaviors. In such cases, the system’s model is not
accurate and this may significantly degrade the performance of
Kalman-type filtering. Otherwise, the SVSF preserves robustness
and stability within a predefined boundary layer for bounded
uncertainties and noise levels. Therefore, the SVSF alleviates the
need for an accurate model under uncertain cases.

(b) Conventional state estimation approaches (e.g. the Kalman-type
filtering, the 𝐻∞ filter, and the particle filter) provide the
measurement error (the innovation sequence) as an indicator
of performance. Further to this, the SVSF provides a secondary
indicator of performance based on the chattering signal (Habibi,
2007), which explicitly relates to uncertainties and modeling
errors. This indicator may be interpreted to monitor the system’s
health condition.

(c) The EKF applies to estimate states of nonlinear systems based on
the local linearization of nonlinearities around operating points.
This, however, reduces the accuracy as well as the optimality of
the filter, particularly under uncertain cases. Otherwise, the SVSF
estimates the states using the nonlinear state model and without
the need for linearization or approximation. This alternatively
increases the accuracy of the estimation. Note that however
for systems with nonlinear measurement models, similar to the
Kalman-type filtering, the SVSF needs to locally linearize the
nonlinearities around operating points.

3. The battery test setup and performance tests

In order to conduct experiments on a Lithium polymer cell, a battery
test setup is designed and built. Data collected from these tests are used
for modeling and parametrization of the cell, and later on, for the SOC
and SOH estimation.

3.1. The battery test setup

The battery test setup is as shown in Fig. 3. The battery test setup
includes a Lithium polymer cell, an environmental chamber, a power
supply, a data acquisition system, a current sensor, thermocouples and
a safety circuit. The power supply is able to provide ±6 V and ±150 A. It
is connected directly to the Li-Ion cell for charging and discharging and
controlled using the computer via connections to the data acquisition
chassis. Voltage, current, and temperature measurements are acquired
at a sampling frequency of 16 Hz. The 8-slot Ethernet chassis used is
the NI cDAQ-9188. Analog Input modules, Analog Output modules, and
thermocouple modules are incorporated within the chassis. A safety
circuit was used in order to cut off power from power supply to the
battery if MAX/MIN allowable voltage, current and temperature limits
are exceeded. Allowable limits are set using potentiometers.

The environmental chamber is able to vary temperature between
— 66 ◦C to 177 ◦C. The environmental chamber uses two 2.5 HP
compressors in order to change temperature within its chamber. Current
is measured using a highly accurate hall-effect current sensor (LEM IT
200-S Ultra Slab). Fig. 4 shows four omega type-T thermocouples that
are used to monitor and record temperature. Three thermocouples are
used for monitoring battery temperature and one was used for ambient
temperature measurements. A rechargeable Lithium polymer cell is used
for test, modeling, and estimation. Table 1 presents cell properties as
provided by the manufacturer.

Fig. 3. Main components of the battery test setup located at CMHT.

Fig. 4. Thermocouple connections inside the chamber.

Table 1
Physical characteristics of the Lithium Polymer Cell.

Parameter condition Numeric value

Capacity Minimum 2.00 Ah

Cell voltage
Nominal 3.6 V
Charge 4.2 V
Discharge 2.0 V

Charge current Standard
Maximum

2.0 A
6.0 A

Charge time Standard 1.5 h

Discharge current Standard
Maximum

2.0 A
20.0 A

3.2. Test procedures

Some tests are conducted to specify cell’s baseline characteristics
such as capacity, internal resistance, open-circuit voltage versus the
SOC, as well as aging effects. The first three tests are referred to as
the reference performance tests and are performed on a fresh cell at
a controlled room temperature of 25 ◦C. The fourth test is the aging
test and is conducted to study the effect of battery degradation due to
multiple charging/discharging. The guideline for these tests is prepared
based on a report published by the U.S. Idaho National Laboratory (The
U.S. DOE/Idaho National Laboratory, 2008).
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These tests are described and conducted as follows:

1—The Static Capacity Test:
The static capacity test is conducted to measure the cell capacity in

Ampere-hours at a constant current discharge rate. It provides a baseline
for measuring the nominal capacity of a fresh cell. This test applies
based on the constant-current constant-voltage mode, as follows (The
U.S. DOE/Idaho National Laboratory, 2008):

(a) Charge the Li-Ion cell at 1 C-rate (2 A) in a constant-current
constant-voltage mode to reach the fully charged state. The cell
will be fully charged at 4.2 V and the test will stop when the
current is at 0.02 C (0.04 A);

(b) Disconnect the cell and leave it to rest with no load for one hour
in order to stabilize the voltage and the current;

(c) Discharge the cell at 1 C-rate with a constant current until the
cell voltage hits the cell minimum voltage limit at 2 V;

(d) Disconnect the cell and leave it to rest with no load for one hour.

The static capacity test was conducted based on the above procedure,
and the current was recorded. Taking the numerical integration of the
current over time, the nominal capacity 𝐶𝑛 of the cell was obtained
equal to 2.05 Ah (7380 A s) and it is close to the manufacturer data
(see Table 1).

2—The OCV–SOC Characterization Test:
The OCV–SOC characterization test is conducted to characterize the

open-circuit voltage (OCV) as a function of the state of charge (SOC)
variations. In order to minimize the cell dynamics, as well as the Ohmic
loss produced by the battery internal resistance, a very small C-rate
(C/20, C/15) is applied for the OCV–SOC characterization test. In this
context, by performing this experiment with very small C-rates, the
measured terminal voltage is assumed to be equal to the open circuit
voltage. This test is similar to the capacity test but is conducted at a
very low C-rate. The OCV–SOC characterization test is performed, as
follows (The U.S. DOE/Idaho National Laboratory, 2008):

(a) Charge the cell in a CCCV mode until reaching the maximum
voltage limit at 4.2 V.

(b) Discharge the cell at the constant current mode with 1 C-rate
until the voltage reaches the minimum voltage limit at 2 V.

(c) Disconnect the cell from the chamber and leave it and other
components of the setup to rest with no load. This causes that
the cell remains at a zero state of charge.

(d) Charge the cell at a very small C-rate of C/15 (0.1333 A)
in a constant-current constant-voltage mode until it hits the
maximum voltage of 4.2 V. The cell is left to rest for one hour.

(e) Discharge the cell at the same rate of C/15 (0.1333 A) until and
the battery hits the minimum voltage of 2 V.

The importance of the OCV–SOC characterization test is for creat-
ing the measurement model and accordingly estimating the terminal
voltage. The SOC–OCV characterization test was separately conducted
for charging and discharging with a low C-rate equal to C/15 (0.1333
A). Using a law C-rate for charging and discharging causes that the
voltage drop due to the internal resistance of the cell will be negligible.
Moreover, this minimizes battery dynamics, and hence, the measured
terminal voltage can be considered as the open circuit voltage. To create
the measurement model, the OCV profile needs to be formulated as a
function of the SOC (or Z). The charging and discharging curves were
then averaged to obtain a single fixed profile that correlated the OCV
values to SOC variations. A 10th-order polynomial function was used
for model parameters fitting of this profile. It is given by:

𝑂𝐶𝑉 (𝑍𝑘) = 𝑝10𝑍
10
𝑘 + 𝑝9𝑍9

𝑘 + 𝑝8𝑍
8
𝑘 + 𝑝7𝑍

7
𝑘 + 𝑝6𝑍

6
𝑘 + 𝑝5𝑍

5
𝑘

+ 𝑝4𝑍
4
𝑘 + 𝑝3𝑍

3
𝑘 + 𝑝2𝑍

2
𝑘 + 𝑝1𝑍𝑘 + 𝑝0. (11)

Table 2 shows numeric values of the eleven coefficients obtained by
interpolation. Fig. 5 shows three profiles including the OCV–SOC curve

Table 2
Coefficients of the 10th-Order SOC–OCV Polynomial.

Coefficient 𝑝10 𝑃9 𝑃8 𝑃7
Numeric value −10150.68 54373.42 −125525.42 163388.70
Coefficient 𝑃6 𝑃5 𝑃4 𝑃3
Numeric value −131706.22 67987.96 −22460.65 4613.87
Coefficient 𝑃2 𝑝1 𝑝0
Numeric value −554.99 35.66 2.53

for charging, the OCV–SOC curve for discharging, and their average
curve used for interpolation.

It is deduced from Fig. 5 that the cell behavior is not identical for
charging and discharging. It is because of the hysteresis effect that
results in loss of energy. The amount of voltage drop by the hysteresis
effect may simply be obtained by subtracting the SOC–OCV curve for
discharging from the one obtained for charging. Fig. 6 shows the voltage
drop due to the hysteresis effect during the OCV–SOC characterization
test. This profile may be used to model the hysteresis effect.

3—The Driving Cycle Test:
In this research, two current cycles are used in order to excite the

cell’s dynamics. They include 1- a current cycle provided by the man-
ufacturer, and 2- a current cycle obtained by the urban dynamometer
driving schedule (UDDS) (Ahmed, El-Sayed, Arasaratnam, Habibi et al.,
2014; Ahmed, El-Sayed, Arasaratnam, Tjong et al., 2014). The terminal
voltage is measured as an output. Fig. 7 presents profiles of the applied
input current cycle 𝑖𝑘, the measured terminal voltage 𝑉𝑡,𝑘, and the SOC.
The SOC profile is calculated though numeric integration of 𝑖𝑘 over time
(Coulomb-counting), using the following equation (Plett, 2004b):

𝑍𝑘+1 = 𝑍𝑘 −
𝜂𝛥𝑡
𝐶𝑛

𝑖𝑘, (12)

where 𝑍𝑘 is the state of charge, 𝜂 is the Coulombic efficiency, 𝐶𝑛 is the
cell’s nominal capacity, and 𝛥t is the sampling time.

4—The Aging Test:
There is a number of procedures for conducting the aging test, as

reported in The U.S. DOE/Idaho National Laboratory (2008). In this
research, the aging test is designed and implemented on a fresh Lithium
polymer cell following the schedule B3 test (The U.S. DOE/Idaho
National Laboratory, 2008). In this test, the battery undergoes aging by
applying high C-rate currents up to 10C and at elevated temperatures
(35 to 40 ◦C). It is because chemical reactions exponentially increase
with temperature, and hence, cell aging is accelerated at higher temper-
atures. The aging test is designed based on the manufacturer data and
a mix of some current cycles (UDDS, US06, HWFET, etc.) which is used
for charging/discharging. According to Table 1, since the maximum
charging current is 3C, the maximum regenerative current for charging
is set to 3C (6A). Moreover, the maximum discharging current is set
to 10C (20A). In the conducted aging test, based on schedule B3, a
charge/discharge cycle lasts for 100 min, and after each cycle, the cell
is left to rest with no load for 30 min. The aging test is conducted on
a fresh Lithium polymer cell for about 20 weeks. It makes the cell be
aged at approximately 80% of its nominal capacity after 20 weeks. In
order to measure the cell degradation, reference performance tests are
conducted every 5 weeks. Fig. 8 presents the capacity degradation of
the cell under the aging test-schedule B3.

4. The equivalent circuit modeling method

In this research, six equivalent circuit models are suggested for
modeling and parametrization of the Lithium polymer cell with different
levels of complexity. These models include the 1st-order R-RC, the 2nd-
order R-2RC, and the 3rd-order R-3RC model with and without the
hysteresis element. In this context, the input–output (current-terminal
voltage) data are initially captured using the test setup and following the
test procedures. Thereafter, the adaptive particle swarm optimization
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Fig. 5. Profiles of the OCV–SOC for charging, discharging, and their average.

Fig. 6. Profile of the voltage drop due to hysteresis using the OCV–SOC test.

Fig. 7. Profiles of the input current cycle, measured terminal voltage, and the SOC (calculated by Coulomb counting) using the driving cycle test.
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Fig. 8. The capacity degradation profile through the aging test-schedule B3.

(PSO) technique (Al-Ani, 2012) is applied to each model for parameter
identification. The adaptive PSO optimizer applies a more efficient
search engine with respect to a conventional optimizer such as the
genetic algorithm. Due to lack of space, the paper only describes the 3rd-
order R-3RC model without the hysteresis element. The performance of
this model is then compared with other five equivalent circuit models
in terms of accuracy and computational cost.

4.1. Adaptive particle swarm optimization

The particle swarm optimization (PSO) method is a heuristic stochas-
tic optimization method that is originated from the swarm intelligence
concept. This concept describes how a swarm of insects, a flock of birds,
or a school of fish search for food. Following this concept, a PSO method
uses a population-based search engine to determine an optimal set of
solutions in the objective space. There is a large number of techniques
that introduce modifications to the original PSO method. These modifi-
cations improve the PSO performance in terms of the convergence rate,
exploration capability, and computational complexity. Al-Ani (2012)
has developed the adaptive PSO concept by using an adaptive parallel
clustering-based search engine into the optimizer formulation. This
optimizer uses a new dynamic model for updating the velocity of
particles in the search space and prevents selection of local optimums.
The adaptive PSO technique can dynamically tune values of the designed
parameters, search space boundaries, weighting factors, as well as the
external repository’s size (Al-Ani, 2012). It not only overcomes the
main concerns of a heuristic optimization technique (e.g. premature
convergence, diversity, quality guarantees, etc.), but also increases the
optimizer convergence rate. The adaptive PSO technique (Al-Ani, 2012)
is used in this research to identify parameters of the 3rd-order R-3RC
model using input–output data.

4.2. The 3rd-Order R-3RC model

The 3rd-order R-3RC model consists of three elements including 1-
an internal resistance 𝑅0, 2- three modeling resistances 𝑅1, 𝑅2, 𝑅3, and
3- three modeling capacitances 𝐶1, 𝐶2, 𝐶3. It is formulated in the state-
space form, as follows (Hu et al., 2012):
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Fig. 9. The 3rd-order R-3RC model of a battery cell.

𝑉𝑡,𝑘 = 𝑂𝐶𝑉 (𝑍𝑘) − 𝑉1,𝑘 − 𝑉2,𝑘 − 𝑉3,𝑘 − 𝑅0𝑖𝑘, (14)

where 𝑉1,𝑘, 𝑉2,𝑘, and 𝑉3,𝑘 are the voltage across capacitors 𝐶1, 𝐶2, and
𝐶3, respectively. The model has four state variables: the voltage 𝑉1,𝑘,
the voltage 𝑉2,𝑘, the voltage 𝑉3,𝑘, and the SOC variable 𝑍𝑘. The input to
the model is the current 𝑖𝑘 and the output is the terminal voltage 𝑉𝑡,𝑘.
Moreover, the internal resistance 𝑅0 represents the Ohmic resistance
of a cell. It has two values, 𝑅+

0 for a positive input current, and 𝑅−
0

for a negative current. OCV(Z 𝑘) represents the open-circuit voltage
relationship defined as a polynomial function of 𝑍𝑘. Fig. 9 shows a
circuit diagram for the 3rd-order R-3RC model.

4.3. Modeling and parametrization

Modeling and parametrization of the Lithium polymer cell are
performed using MATLAB. The sampling time is equal to 0.062 s, and
the cell Coulombic efficiency 𝜂 is assumed to be one. The nominal
capacity of the cell was obtained by the static capacity test and was
equal to 7380 A s. The OCV–SOC averaged curve is approximated using
a 10th-order polynomial function. The adaptive PSO technique is used to
identify values of the eight unknown parameters of the model including
𝑅1, 𝐶1, 𝑅2, 𝐶2, 𝑅3, 𝐶3, 𝑅+

0 , 𝑅
−
0 . The optimizer minimizes the error that

is the difference between the measured and the simulated terminal
voltage. The objective function is given by:

𝐽 = min
𝑛
∑

𝑘=1

(

𝑉𝑡,𝑘 − 𝑉𝑡,𝑘
)2. (15)

Table 3 lists numeric values of the eight unknown parameters cal-
culated by the adaptive PSO technique. The adaptive PSO technique is
compared to the genetic algorithm in terms of their fitness value at each
generation. The fitness value may be used as an index for comparing
the convergence rate of each optimizer. The population size and the
generation number for both the genetic algorithm and the adaptive
PSO technique are set equal to 1000 populations and 15 generations.
Fig. 10 presents that for a 1000 population size and after 15 generations,
the adaptive PSO technique has smaller fitness values compares to the

8
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Fig. 10. Fitness values of the genetic algorithm and adaptive PSO.

Fig. 11. Profiles of the measured and simulated terminal voltage for the model.

Table 3
Parametric values of the 3rd-order R-RC model using adaptive PSO.

Parameter Numeric value

Modeling capacity, 𝐶1 1293.54 (A s)
Modeling resistance, 𝑅1 0.00634 (Ω)
Modeling capacity, 𝐶2 12384.35 (A s)
Modeling resistance, 𝑅2 0.00624 (Ω)
Modeling capacity, 𝐶3 4638.46 (A s)
Modeling resistance, 𝑅3 0.00371 (Ω)
Internal resistance, 𝑅+

0 0.03140 (Ω)
Internal resistance, 𝑅−

0 0.02550 (Ω)

genetic algorithm. This alternatively leads to a faster convergence rate
for the adaptive PSO technique compares to the genetic algorithm.

Fig. 11 shows profiles of the measured terminal voltage and the
one obtained by the 3rd-order R-3RC model. The root-mean-square
(RMS) value of the error for the terminal voltage is equal to 0.01897
V. Note that the accuracy of the 3rd-order R-3RC model with the above
parameters has been verified using another validation experiment. In
this experiment, a UDDS cycle applies to excite the battery cell. Fig. 12
compares the measured and the simulated terminal voltage for the
validation experiment. In this experiment, the RMS of the error between
the measured and the simulated terminal voltage is obtained as 0.0198
V. Fig. 13 compares the accuracy of the six equivalent circuit models
based on the RMS values of the output error. Fig. 13, the 3rd-order
R-3RC-H model is the most accurate model, closely followed by the
3rd-order R-3RC model. Note that since the execution times for running
these six models are close, the accuracy is the main parameter of interest.

5. Reliable SOC estimation using the SVSF method

Since the SOC cannot be directly measured, state estimation methods
are required to extract the SOC value from terminal voltage measure-
ments. The 3rd-order R-3RC model with parameters of Table 3 can be
used by an estimator to predict SOC values. Note that there may be

several sources of noise, modeling and parametric uncertainties in the
SOC estimation process. The main sources of modeling uncertainties
include:

- Inaccuracies in the modeling due to approximation as an equivalent
circuit model;

- Averaging of the OCV–SOC curve for charging and discharging with
a single curve;

- Approximating the hysteresis curve;
- Uncertainties in the initial SOC; and
- Parametrization error.
The main sources of parametric uncertainties include the error in the

parameter identification of the cell and deviations of battery’s param-
eters from their nominal values due to aging or improper usage. There
are also several sources for the noise that include the instrumentation
noise, the voltmeter measurement noise, and unpredictable variations
of the cell temperature. To alleviate negative effects of noise, modeling
and parametric uncertainties, robust state estimation techniques are
proposed.

From a practical point of view, there is a trade-off between the
complexity of the cell model and its accuracy. In this study, the 3rd-
order R-3RC model without the hysteresis element is selected for SOC
estimation. Even though the 3rd-order R-3RC-H model is slightly more
accurate than the one without hysteresis; however, the 3rd-order R-3RC
model without hysteresis is more suitable for real-time SOC estimation.
It is because this model has a time-invariant linear state model and
it is less computationally demanding. Hence, for SOC estimation, the
modeling accuracy is compromised in the price of reducing the compu-
tational effort and running time. Fig. 14 shows a block-diagram scheme
for the real-time SOC estimation task. It consists of the hardware and
software sides. The hardware side includes the experimental battery
setup, cell, measurement sensors, and a personal computer. The software
side includes filtering strategies, the 3rd-order R-3RC model, and a user-
interface software designed by LabVIEW.

In this research, full state estimators are designed for SOC estimation
using the EKF and the SVSF method. The measurement equation of the

9
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Fig. 12. Profiles of measured and simulated terminal voltage using validation test.

Fig. 13. Accuracy of six models in terms of RMS of the measurement error.

3rd-order R-3RC model is nonlinear and needs to be linearized with
respect to the SOC variable. The Taylor’s series expansion is used for
linearization, whereas high-order terms are neglected. The linearized
form of the measurement equation is equal to:

𝑉𝑡,𝑘 =
𝜕𝑂𝐶𝑉 (𝑍𝑘)

𝜕𝑍𝑘

|

|

|

|𝑧𝑘|𝑘−1
− 𝑉1,𝑘 − 𝑉2,𝑘 − 𝑉3,𝑘 − 𝑅0𝑖𝑘. (16)

Since there is only one measurement 𝑉t , the measurement error 𝑒𝑧 and
the smoothing layer width 𝜓 are scalers. For the SVSF, the convergence
rate 𝛾 is set to 0.5, and the smoothing layer width is set to 1. For the
EKF, the process noise covariance Q𝐄𝐊𝐅 and the measurement noise
covariance R𝐄𝐊𝐅 are respectively set to:

𝐐𝐸𝐾𝐹 = 𝐃𝐢𝐚𝐠([1 × 𝑒 − 6, 1 × 𝑒 − 6, 1 × 𝑒 − 6, 1 × 𝑒 − 6]), 𝐑𝐸𝐾𝐹 = [5] . (17)

The initial state error covariance matrix for the EKF is set to: 𝐏𝐸𝐾𝐹 (0) =
𝐃𝐢𝐚𝐠([0.1, 0.1, 0.1, 0.1]). SOC values are estimated using the EKF and
SVSF methods for a healthy and an aged Lithium polymer cell in three
scenarios, as follows:

It is guaranteed that if the convergence rate matrix 𝛾 of the SVSF
is diagonal with positive elements such that 0 ≤ 𝛾𝑖𝑖 < 1, the SVSF
will produce convergent state estimates (Habibi, 2007). Following the
stability criterion of the SVSF (Habibi, 2007), and using the error
equation of the filter, it is deduced that:

|𝑒𝑧𝑘|𝑘 | = 𝛾|𝑒𝑧𝑘−1|𝑘−1 |. (18)

Hence, the convergence rate of the SVSF is determined by the proper
choice of 𝛾 such that 0 ≤ 𝛾𝑖𝑖 < 1. The proper choice of 𝛾 ensures that
eigenvalues of the error equation remain within the unit circle and hence
guarantees the stability of state estimates.

5.1. Healthy Lithium polymer cell with known initial SOC

In this scenario, a healthy Lithium polymer cell with a perfectly
known model undergoes experimentation. The actual initial SOC was
equal to 90.7%, whereas for the initial SOC estimate is assumed to
be 85%. Hence, the initial state estimation vector is assumed to be

Table 4
RMS of error for a healthy cell with perfectly known model.

SOC (%) Terminal voltage (v)

EKF 0.990 0.0243
SVSF 0.999 0.0225

Table 5
RMS of error for a healthy cell with unknown initial SOC.

SOC (%) Terminal voltage (v)

EKF 4.858 0.0287
SVSF 3.184 0.0239

Table 6
RMS of error for the aged cell with unknown model.

SOC (%) Terminal voltage (v)

EKF 2.835 0.0296
SVSF 1.942 0.0237

�̂�(0) =
[

0 0 0 85
]𝑇 for both EKF and SVSF. Table 4 presents RMS

values of the error for the SOC and the terminal voltage estimation.
Fig. 15 compares the estimated SOC and the estimated terminal voltage
with the actual ones using the 3rd-order R-3RC model. The actual SOC
is obtained by Coulomb counting, and the actual terminal voltage is
obtained by voltmeter measurements.

5.2. Healthy Lithium polymer cell with unknown initial SOC

This scenario is applied to examine the robustness of state estimators
versus uncertainties in the initial SOC estimate. In this scenario, the
healthy Lithium polymer cell with a perfectly known model undergoes
experimentation. The initial SOC estimate is assumed to be 50%,
whereas the actual initial SOC is 90.7%. Table 5 compares RMS values
of the error for this scenario. Fig. 16 compares profiles of the estimated
SOC and the estimated terminal voltage with the actual ones.

5.3. Aged Lithium polymer cell with unknown model

This scenario is applied to examine the robustness of estimators
versus unknown uncertainties. In this scenario, an aged Lithium polymer
cell with an unknown model undergoes experiments. The capacitance
of the aged cell is equal to 6260 A s (SOH = 80%). To compare the
robustness of the SVSF with the EKF, the 3rd-order R-3RC model with
parameters of Table 3 is used for SOC estimation, whereas terminal
voltage data are obtained from the aged cell. Table 6 compares RMS
values of the error for this scenario. Fig. 17 compares profiles of
estimated SOC and terminal voltage with the actual ones.

According to Figs. 15, 16 and 17, it is deduced that where the
cell model, parametric values, and the initial condition are accurate
(scenario A), the SVSF accuracy is close to the EKF for SOC estimation.
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Fig. 14. A general scheme of the reliable strategy for SOC estimation.

Fig. 15. The actual and the estimated SOC and terminal voltage profiles for a healthy Lithium polymer cell with initial SOC estimate equal to 85%.

Otherwise, where there exist uncertainties in the initial condition
(scenario B) or in modeling and parametric values (scenario C), the SVSF
method provides more accurate SOC estimation. Moreover, for these
scenarios, the SVSF is more accurate for terminal voltage estimation. The
computational cost for the SVSF is less than the EKF, and both methods
can be applied for real-time SOC estimation.

6. SOH estimation based on the chattering analysis

Further to the measurement error (the innovation sequence), the
SVSF method provides a second performance indicator that is referred
to as the chattering indicator. Chattering reflects the level of modeling
and/or parametric uncertainties within the system model. Statistical
properties of the chattering signal significantly change for systems under
a fault or any abnormal conditions. In such cases, since state estimators
use the normal model of the system, modeling and/or parametric
uncertainties increase considerably. Hence, the chattering indicator may
be used as a tool for health monitoring, and even for quantifying the
severity of the fault condition. Note that for SOC estimation using the

SVSF, chattering was initially alleviated by means of the smoothing layer
concept. To introduce chattering as a performance indicator, the width
of the smoothing layer needs to be set equal to a small value. It is because
a smoothing layer with a large width will filter out useful information
from the chattering signal. The chattering indicator is given by (Habibi,
2007):

𝛯 =

⎧

⎪

⎨

⎪

⎩

0 for |𝑒𝑖,𝑧𝑘|𝑘 | ≤ 𝜓𝑖

𝛼
(

𝑒𝑖,𝑧𝑘|𝑘 − 𝜓𝑖
)2

for |𝑒𝑖,𝑧𝑘|𝑘 | > 𝜓𝑖
, (19)

where 𝜓𝑖 denotes an entry of the diagonal smoothing layer width matrix
𝜓 , 𝑒𝑖,𝑧𝑘|𝑘 is an entry of the measurement error vector, and 𝛼 is a scaling
coefficient. Since there is only one measurement, the measurement error
𝑒𝑧 and the smoothing layer width 𝜓 are scalers. In order to use the SVSF’s
chattering indicator for SOH estimation, 𝜓 and 𝛼 are set to 10−3 and 104,
respectively.

Five cases are studied for SOH estimation including the healthy
Lithium polymer cell, and the aged one with four levels of aging. The
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Fig. 16. The actual and the estimated SOC and terminal voltage profiles for a healthy Lithium polymer cell with initial SOC estimate equal to 50%.

Fig. 17. The actual and the estimated SOC and terminal voltage profiles for the aged Lithium polymer cell with an unknown model.

four aging levels include aging after 5 weeks, 10 weeks, 15 weeks, and
20 weeks (see Fig. 8). The normal 3rd-order R-3RC model is used by the
SVSF to generate chattering, whereas the terminal voltage is measured
for each case separately. The chattering signal is captured for each
case and is analyzed to estimate the SOH of the Lithium polymer cell
under aging. The static capacity test is conducted after every five weeks
to measure the capacitance degradation during aging. Fig. 18 shows

profiles of the chattering indicator for the healthy Lithium polymer and
the one under aging after 20 weeks. Fig. 18 presents that the indicator’s
amplitude for the cell under aging is much larger than the healthy cell
(about 60 times). Table 7 presents mean and standard deviations (STD)
values of the chattering indicator relevant to each case. It also presents
the cell capacitance for each case obtained by the static capacity test.
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Fig. 18. Chattering indicators for a healthy and an aged (20 weeks aging) cell.

Table 7
The SVSF’s chattering as an indicator for SOH estimation.

Cell test case Cell capacitance (A s) Statistical properties of 𝛯

Mean STD

Healthy cell 7380 0.0043 0.0877
After 5 weeks aging test 7272 0.1644 1.7687
After 10 weeks aging test 6876 0.4145 4.8632
After 15 weeks aging test 6347 0.6306 7.3245
After 20 weeks aging test 5905 0.8283 9.5857

The mean and standard deviation values may be used to quantify the
capacity degradation due to aging.

Table 7, it is deduced that the mean and the standard deviation value
of the chattering indicator increases when the cell undergoes aging. A
longer aging test results in higher mean and standard deviations values
for the chattering indicator. Alternatively, it may be used to estimate
the current SOH of the cell without the need to obtain a new model
and parameterize it for the aged cell. Introducing the SVSF’s chattering
indicator for SOH estimation based on an equivalent circuit model
obtained for the healthy cell is another main advantage of the SVSF for
SOC estimation. It also alleviates the need to study the electrochemical
reactions inside a cell in order to calculate its SOH.

7. Conclusion

This paper introduces a new reliable strategy for the real-time state
of charge (SOC) and state of health (SOH) estimation of Lithium polymer
cells. The paper describes a battery test setup and a general guideline
for conducting reference performance tests. Results of these tests are
later used to obtain six equivalent circuit models that describe the cell
dynamics with different levels of complexity. These models are then
parameterized using experimental input–output data and the adaptive
particle swarm optimization method. Precise modeling of a battery
requires extensive and complicated equations which might not be
practically tractable. The equivalent circuit models impose a modeling
uncertainty to the estimation process in the first place, apart from other
sources of uncertainty and noise.

The SVSF and the EKF methods are applied to these models in
order to estimate the SOC and the terminal voltage of the healthy and
aged cells. Due to the unique design of the SVSF method for state
estimation, it becomes inherently robust and stable to uncertainties. This
characteristic is specifically invaluable for SOC estimation of batteries.
Two sources of uncertainties are investigated for SOC estimation that
included uncertainties on the initial SOC estimate and on the cell
model undergoes aging. Experimentations demonstrated that the SVSF
produces more accurate SOC estimates over the EKF for uncertain
scenarios. The other advantage of the SVSF method for SOC estimation
is introducing a new performance indicator referred to as the chattering
indicator. This indicator measures uncertainties in the SOC estimation. It

is used as an indicator for SOH estimation without the need to model the
aged cell. Aging tests confirm the accuracy of the chattering indicator
for SOH estimation of the Lithium polymer cell under uncertain and un-
modeled aging conditions. It is important to note that the presented SOH
estimation method would be applicable for different battery chemistries.
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