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Abstract- The accurate estimation of the state-of-charge (SoC) of 
lithium-ion batteries is crucial for safely operating electric 

vehicles. One way to obtain information about SoC is to utilize 
battery impedance profiles. Effects of temperature, SoC, and 
state-of-health (SoH) on impedance have been studied using 

Electrochemical impedance spectroscopy (EIS) but the effect of 
relaxation period following a charge or discharge cycle requires 
more attention. In this study EIS results are obtained with respect 

to relaxation period at different SoCs and temperatures. An 
impedance model is fit to the data and the change of model 
parameters with relaxation is analyzed. The results show that the 

behaviour of the model parameters is in good agreement with 
electrochemical theory. Furthermore, it is found that changes in 
some model parameters are significant when compared to 

changes in SoC. This highlights the need to account for the 
relaxation effect when measuring battery impedance.  

 

I. INTRODUCTION 

Lithium-ion batteries (LiB) are the current choice for many 

applications due to their energy density, and long life-span [1]. 

However, charge and discharge rates, voltage levels, and 

temperature have to be carefully managed to ensure the safe 

operation of LiBs [2]. The quality of battery management 

depends on the accuracy of the estimation of battery states such 

as state of charge (SoC), and state of health (SoH). These states 

have to be estimated since they cannot be measured. Instead, 

battery voltage, current, and temperature are measured, and 

used in estimation strategies [3]. The most important estimate 

is the SoC which indicates how much energy is left in the 

battery. The SoC changes non-linearly as the battery is 

discharged and depends on the discharge profile. All charge is 

depleted once the lower voltage limit – which is determined by 

the manufacturer – is reached. One factor determining the 

accuracy of SoC estimation is the SoH of the battery. The SoH 

affects the maximum capacity that the battery can supply at 

any point in its life, relative to the initial rated capacity. The 

SoH changes due to aging mechanisms inside the battery [4], 

which depend on the operating conditions during the lifetime 

of the battery. Therefore, SoC must be estimated using 

measurable signals such as voltage, current, and temperature, 

but also by factoring in how the behaviour of the battery 

changes as a function of SoH.  

The management of LiBs is particularly important for 

battery packs in electric vehicles (EV). A wide variety of 

parameter estimation techniques are available for EV 

applications, collectively covering most operating conditions 

and individually showing reasonable tracking accuracy [5].  

 However, the challenge remains to find a more accurate, 

reliable, universal, and feasible estimation strategy.  

Battery states are also related to battery impedance. Battery 

impedance holds useful information about the internal 

condition of the battery. Impedance is the combination of 

reactance and resistance. In batteries, impedance comes from 

the interaction between different materials, the material 

characteristics themselves, and chemical reactions [6]. 

Impedance can be modeled using fundamental electrical circuit 

components such as resistors and capacitors. However, 

imperfect circuit elements must be used to increase the 

modeling accuracy. Models containing such imperfect 

elements are referred to in this work as impedance models, to 

distinguish them from ideal equivalent circuit models (ECM).   

Electrochemical impedance spectroscopy (EIS) is a method 

frequently used to characterize the impedance of batteries. In 

this method, the battery response to a small, sinusoidal signal 

at multiple frequencies is measured. Using the Fourier 

transform the time domain response can be converted to 

frequency domain. From the frequency domain data, a 

characteristic Nyquist plot can be constructed and used to gain 

insight into the state of the battery, including its internal 

resistances, capacities and time constants. To accomplish this, 

the impedance response of a battery is fit to ECMs or 

impedance models to mimic electrical systems that result in a 

similar shape of the Nyquist plot, in response to EIS.  Any 

elements used in ECMs or impedance models must relate to 

internal characteristics of the battery to be meaningful [7]. 

Hardware to implement EIS is not usually found on-board 

battery management systems (BMS) in EVs because of the 

added cost and complexity of the electronics [8]. However, 

some recent studies have shown EIS implementations utilizing 

existing electronics [9], [10]. If hardware barriers can be 

overcome, EIS could provide valuable measurements that can 

be used in SoC estimation algorithms. Another concern with 

EIS is that measurements are dependent on a variety of factors 

such as SoC, SoH, temperature, and time of measurement with 

respect to other battery excitation (charge/discharge) – known 

as relaxation. Therefore, the relationships between these 
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variables and the shape of the Nyquist plot must be studied and 

understood. Many have studied the impact of SoC, SoH, and 

temperature [11]–[14], however, few have shown the impact 

of relaxation. In [15], discharge pulses were used to measure 

the change in lithium-ion battery impedance with relaxation. 

They found that many ECM parameters change with relaxation 

for different SoCs and discharge currents. In [16] the change 

in OCV with relaxation time was analyzed. Here, time 

constants of ECM parameters were related to SoH. Relaxation 

was investigated by [17]–[19]. The relaxation effect was 

acknowledged by [15] as part of an impedance characterization 

study and changes in the Nyquist plot were shown to 40 hours. 

They concluded that impedance changes due to relaxation are 

small compared to impedance changes due to temperature and 

SoC but significant enough to require the relaxation effect to 

be accounted for when comparing impedance results. In [18] 

the Nyquist plots were shown to stabilize after relaxation of 4 

hours under constant SoC and temperature. In [19] relaxation 

effects were shown to still be visible after 10 hours, and a range 

of SoCs and temperatures were tested. Both [18] and [19] 

tested different lithium ion chemistries and battery formats, 

and developed models to explain the cause of relaxation.  

 The proposed study aims to provide insight into the 

variation of EIS in relation to relaxation effects for a range of 

battery conditions for a state of the art commercial, cylindrical 

cell. In addition, the impact of relaxation on the parameters of 

an impedance model is analyzed.  

II. EXPERIMENTAL 

A custom battery test bench was designed to perform 

unattended relaxation experiments by integrating a BioLogic 

SP150 potentiostat with Agilent loads and power supplies 

(N3306A, N6773A respectively) and a Testequity 1007C 

thermal chamber. In this study a new Samsung INR21700-

48G, 4.8 Ah, cylindrical lithium ion battery was used. The cell 

was conditioned by 10 full charge discharge cycles. The cell 

was charged as specified by the manufacture’s datasheet 

starting with a constant current (CC) phase at 0.3C 4.2V 

followed by a constant voltage (CV) phase to 0.02C cut-off 

current. Full discharge was done at 0.2C to 2.5 V in CC mode, 

and SoC targets between 100% and 30% were obtained at 0.2C 

as well using ampere-hour counting. EIS data was collected 

between frequencies of 30 mHz to 30 kHz with a voltage 

amplitude of 5 mV, 6 points per decade and 5 sine wave 

periods per frequency. EIS data was measured immediately 

after reaching the target SoC (via discharge only), and re-

measured at 30, 60, 180, 300, and 420 minutes. The relaxation 

test was performed at 25 °𝐶 and 40 °𝐶 cell surface temperature.  

III. RESULTS AND DISCUSSION 

The EIS response of a battery was measured as described 

in the previous section to capture the relaxation effect. The 

relaxation test was repeated three times to ensure the 

repeatability of the impedance data. It was found that 

relaxation effects could be distinguished from repeatability 

errors. The average standard deviation of the impedance was 

found to be 4.6e-05 𝑚Ω. Fig. 1 shows Nyquist plots for 

impedance data at 24 °𝐶 and 40 °𝐶 and how the impedance 

changes from 100 % to 70 % to 30 % SoC. In the following 

subsections the impedance data is fit to a model and the change 

of model parameters with respect to the relaxation effect is 

analyzed.  

 

A. Impedance Model 

Fig. 2a shows an ECM adopted from [20] and used in this 

work. The complex impedance 𝑍 of this ECM changes with 

frequency 𝜔 according to (1), where the time constant 𝜏 =

(𝑅𝑝𝑄𝑝)
1

𝛼⁄
. 

 
 Z(𝜔) = i𝜔L+Rs+Rp/(1+RpQp(i𝜔𝜏)α)+1/Qp(i𝜔)β (1) 

 

Here, 𝑖 is the applied current magnitude, 𝐿 is the inductance 

due to cables used for measurment, and 𝑅𝑠 is the ohmic 

 
Fig. 3.  Impedance model fitting error with different SoCs over different rest 

times.   

  

 
Fig. 1. Nyquist plots for 100%, 70% and 30% SoC at 25°𝐶 and 40°𝐶.  
  

 
Fig. 2.  Impedance model used to model relaxation effect a), and model fit to 

relaxation data at 25°𝐶 and 90% SoC b).  
  



resistance of the battery. 𝑅p and 𝑄p, 𝛼 define the polarization 

resistance and a constant phase element (CPE) for capacitive 

effects from the electric double layer. Together they form a 

ZArc element. Finally, 𝑄d, 𝛽 defines another CPE to capture 

the solid-state diffusion process. The impedance model can fit 

the EIS data well as shown in Fig. 2b for impedance data after 

discharge to 90% SoC with no rest and 7 hours of rest. The 

impedance model parameters were optimized using a 

combination of non-linear least squares and particle swarm 

optimization algorithms. However, neither algorithm was able 

to produce fits with consistent fitting error. Fig. 3 shows how 

the fitting error changes for different SoCs and relaxation 

times. The model fit has greater error at zero rest and stabilizes 

to a constant value for data at 60 minutes and after. This fitting 

error must be considered when analyzing the relaxation results.  

Fig. 4 shows how the fit evolves with relaxation time at 

25 °𝐶 and 40 °𝐶. The change of the Nyquist plot between 5 and 

7 hours is small but still present and is smaller at higher 

temperature when compared to the lower temperature. It can 

be observed that after 5 hours the change in battery impedance 

has slowed significantly. However, it is unclear when exactly 

it has slowed significantly enough such that any further 

impedance changes are negligible. Changes in impedance may 

be deemed negligible if the change has minimal impact on the 

fitting of an impedance model. This is because ultimately the 

impedance model may be used to further analyze the battery 

behaviour and, therefore, the accuracy and consistency of the 

model becomes important.  

B. Relaxation Effect 

To understand how the parameters of the model shown in 

Fig. 1a change with relaxation time, the percentage change of 

each parameter P from its value at 7 hours (420 minutes) 𝑃420 

was calculated using (2). Pt is the value of a model parameter 

(one of L, Rs, Qd, Qp, Rp, a, or b) at relaxation time t. The 

datasets for each parameter were fit with exponential functions 

to model the rate of change during relaxation.  

 
 Δ420 = (Pt – P420)/P420 (2) 
 

Fig. 5 shows Δ420 at 25 °𝐶 for each model parameter at three 

SoCs, 100 % a), 90 % b), 70 % c), and 30 % d). The inductance 

 
Fig. 4.  Modelled relaxation effect at 90% SoC and 25°𝐶 a), and 40°𝐶 b).  

  

 

 
Fig. 5.  Percentage change in impedance model parameters from values at 420 

minutes at 25°C for a) 100% SoC, b) 90% SoC, c) 70% SoC and d) 30% SoC. 
  



L and the ohmic resistance Rs stabilize within 10 minutes in all 

cases. The changes of L and Rs before 10 minutes are 

inconsonant and likely due to the error introduced by the fitting 

process as discussed in the previous section. At 100% SoC the 

parameters with the longest relaxation time are Qp and Rp, i.e. 

two components of the ZArc element. The depression constant 

a (or 𝛼) for the first semi-circle does not change. The 

depression constant for the second semi-circle b (or 𝛽) shows 

a smooth decay at a fast rate. The second CPE parameter Qd on 

the other hand shows noisy data points. This may be explained 

by little or no lithium diffusion at 100% SoC due to low 

availability of intercalation sites on the anode. At 90% SoC, 

where more intercalation sites are available and the relatively 

high cell potential accelerates diffusion, Qd behaves similar to 

Rp. At 70 % Qd stabilizes rapidly again which may indicate a 

point where the cell potential (driving force) and the SoC 

(available intercalation sites) work together to equalize 

concentration gradients [21]. This is reflected by the lower 

initial values of Δ420 for Qp and Rp. However, while the 

difference is lower initially, it takes longer for parameters to 

stabilize due to many available intercalation cites for the 

lithium and, therefore, potentially longer travel paths [19]. 

Finally, at 30 % SoC the cell potential is low, such that Qp, 

Rp and Qd equalize slowly despite the large number of 

available interalation cites. In fact, the relaxation is slowest at 

30 % for all three parameters. Lithium slowly diffuses into and 

through the electrode to find intercalation cites during 

relaxation. At low SoC this process is slow because of the 

reduced driving potential. The exponential fit to the Qp dataset 

at 30 % SoC (Fig. 5d) suggests that at 420 minutes (7 hours) 

the cell has not yet stabilized.  

At 40 °𝐶 (Fig. 6) the model parameters change in a way 

similar to that at 25 °𝐶. The parameters stabilize faster at 

higher SoC and slower at lower SoC, with 30 % showing the 

slowest rate of stabilization. The polarization parameters Qp 

and Rp stabilize at a slightly slower rate at 40 °𝐶 compared with 

25 °𝐶. This is unexpected because of higher reaction kinetics 

at higher temperatures. However, the decrease in rate is small, 

such that additional data will be needed to understand this 

trend. In contrast, Qd does stabilize faster in all cases as 

expected. At 100 % SoC, both diffusion parameters exhibit 

noisy behaviour again. At 40 °𝐶 the exponential fit for Qp and 

Rp at 70 % SoC (Fig. 5c) and Qp at 30 % (Fig. 6d) do not reach 

steady state, suggesting again that further rest is required.  

I. Impedance Maps 

Fig. 7 shows how the dominant model parameters Qp, Rp, 

and Qd change with time and SoC at 25 °𝐶. The relaxation 

effect manifests mostly at the edges of the three-dimensional 

plots. These plots visualize the difference in magnitudes of the 

parameter change due to relaxation and due to SoC. At the 

middle range of SoCs (80 % to 40 %) the parameter changes 

due to relaxation become insignificant when compared to the 

parameter changes due to SoC. However, the relaxation effect 

does cause significant parameter changes at the edges of the 

SoC range (> 90 % and < 40 %). This is evident in Fig. 7 a and 

c for Qp and Rp at 25 °𝐶. At 40 °𝐶 the same can be seen in Fig. 

8c for Rp only. The magnitudes of the parameter values also 

change significantly between 25 °𝐶 and 40 °𝐶. The diffusion 

CPE parameter Qd exhibits a linear trend with SoC from 90 % 

SoC for both temperatures. This is a useful property of SoC 

estimation.  

The need for rest time during experiments can be eliminated 

with the help of impedance maps shown in Fig. 8 and 9, since 

measurements at 0 minutes can be extrapolated to rest time 

values. This is especially important for real time applications 

for EIS measurement where rest times are impractical.  

 

 
Fig. 6.  Percentage change in impedance model parameters from values at 420 

minutes at 40°C for a) 100% SoC, b) 90% SoC, c) 70% SoC and d) 30% SoC. 
  



IV. CONCLUSION 

In the work presented in this paper the relaxation effect of a 

commercial lithium ion battery was characterized using EIS 

and impedance modelling. A suitable impedance model was 

found in literature and used to model the relaxation effect. The 

change of each model parameter with relaxation time was 

analyzed and found to be consistent with electrochemical 

theory. Results at 40 °𝐶 indicate a small decrease in relaxation 

rate which must be investigated further as it is contrary to 

previous literature findings. Impedance maps show that the 

changes in model parameters due to relaxation are significant 

at certain conditions when compared to the changes in 

parameters due to SoC and temperature. This should be 

validated by assessing the impact of the change in model 

parameters due to relaxation on the accuracy of the model. This 

work highlights again the need for careful consideration of the 

relaxation effect. The study will be expanded to longer rest 

times as well as different temperatures, charge/discharge rates, 

battery types, and impedance model in future work.  
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